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Spatially inhomogeneous phase in the two-dimensional repulsive Hubbard model
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Using recent advances in auxiliary-field quantum Monte Carlo techniques and the phaseless approximation
to control the sign/phase problem, we determine the equation of state in the ground state of the two-
dimensional repulsive single-band Hubbard model at intermediate interactions. Shell effects are eliminated and
finite-size effects are greatly reduced by boundary-condition integration. Spin-spin correlation functions and
structure factors are also calculated. In lattice sizes up to 16 X 16, the results show signals for phase separation.
Upon doping, the system separates into one phase of density n=1 (hole free) and the other at density
n. (~0.9). The long-range antiferromagnetic order is coupled to this process and is lost below 7,.
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I. INTRODUCTION

The Hubbard model! provides a minimal framework for
describing electron interactions in a crystal lattice and has
played a central role in condensed matter and quantum
many-body physics. Especially since the discovery of
high-T, superconductors, the two-dimensional (2D) Hubbard
model, believed to contain the essential physics of the CuO
plane,” has been intensely studied. The combination of theo-
retical and numerical techniques has made important
progress,>* but some basic questions have remained.

One of the questions is whether there is phase separation
(PS) in the ground state of the Hubbard model. The question
is important in its own right, as a key element in our under-
standing of the phase diagram of this fundamental model.
Recent experimental indication of spatial inhomogeneities in
cuprates® has further increased its potential relevance and
interest. In the past two decades a large body of numerical
work has been devoted to resolving this issue,’~'# but the
results have been conflicting. The differing answers under-
score the challenges: the requirement of high accuracy, as
well as the difficulty in extrapolating to the thermodynamic
limit because of extreme sensitivity of the signal to both
finite-size and shell effects.

In this paper, we apply recent advances in auxiliary-field
quantum Monte Carlo (QMC) techniques!>'® to study the
ground state of the repulsive 2D Hubbard model. Our goal is
to shed light on the question of PS. A second motivation
comes from ultracold atoms, where rapid experi-
mental progress promises a new avenue—optical-lattice
emulators'’—for direct “simulations” to investigate proper-
ties of Hubbard-like models. Detailed, accurate numerical
data would allow a quantitative benchmark and comparisons
in future optical-lattice experiments. In our approach, the
ability to control the sign/phase problem with a good ap-
proximation, combined with a boundary-condition integra-
tion technique, drastically reduces the finite-size and shell
effects. This allows us to reach much higher accuracy than
previously possible in the model. The measured equation of
state and spin-spin correlations, in lattice sizes up to
16 X 16, show clear signals for PS at intermediate interaction
strengths. The nature of this spatially inhomogeneous state is
examined.
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The Hamiltonian for the one-band Hubbard model is

H=—t2 (C;’O.Cj+5,0.+H.C.)+U2 nJTnJl, (1)
i.60 J

where c{o (cj,o) creates (annihilates) an electron with spin o
(o=7,]) at lattice site j and & connects two nearest-
neighbor sites. The square lattice has size N=L X L, with N,
spin-o electrons. The model has only two parameters, the
strength of the interaction U/r (we will set r=1) and the
electron density n=(N;+N)/N.

PS occurs when the stability condition ¢*e(n)/dn®>>0 is
violated, where e(n) is the ground-state energy (per site) at
density n. The critical value of n can be identified by Max-
well construction. Emery et al.® showed that in the Hubbard
(or #-J) model one could study

e(l1-h)—e(1)

ey(h) = Y

(2)
where & is the hole density; A=1-n. If PS exists, there is a
minimum in e,(h) at A, [or in the thermodynamic limit, a
constant e,(h) for h<h,].5!

II. METHOD
A. Twist-averaged boundary condition

The signal for PS from Eq. (2) requires the slope of the
equation of state, i.e., accurate numerical determination of
small energy differences in the region where /4 is small. For
a finite lattice, the shape of the Fermi surface varies consid-
erably with n, which causes large variations in the energy.
For example, with the usual periodic boundary condition
(PBC), the smallest & accessible by a closed-shell system is
~0.15 in a 16X 16 lattice;'8 even at 40 X 40 the finite-size
effect is still sizable, especially in the region relevant for PS
(see inset in Fig. 3). To reduce shell and finite-size effects,
we use the twist-averaged boundary condition (TABC),'*?!
under which the wave function W(r;,r,,...) gains a phase
when electrons hop around lattice boundaries,

V(. .r+ L, )= OW( r,.), (3)

where L is the unit vector along L and the twist angle
©=(6,,6,) is a parameter. With a generic O, there will be no
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degeneracy in the one-electron energy levels. We average the
results over many random twist angles?' in each system for
convergence. As shown in Figs. 2 and 3, TABC essentially
eliminates any shell effect. The disadvantage is that it turns
the QMC sign problem!’ into a phase problem.'®

B. Constrained path Monte Carlo under TABC

To treat this problem, we extend the constrained path
Monte Carlo (CPMC) method" to a Hamiltonian under
TABC. For each given system (specified by N, n, U, and ©),
the method obtains a Monte Carlo (MC) representation of the
many-body ground state |¥;) by importance-sampled
branching random walks (RWs)!>!¢ in the space of Slater
determinant wave functions. The usual sign problem under
PBC is caused by the symmetry'>?? between a Slater deter-
minant |¢) and a degenerate partner —|¢) (exchanging two
orbitals). To specify | W), we need either but not both. It can
be shown!>23 that constraining the RWs to (W ;| ¢) >0 is an
exact boundary condition that eliminates the sign problem. In
the constrained path approximation, a trial wave function
|, is used in place of [Ws).

Under TABC, the Slater determinants become complex,
and we need to break the phase symmetry in |¢). The
Hubbard-Stratonovich transformation used in our calcula-
tions is the spin-decomposition of Hirsch,?* which results in
real Ising-like auxiliary fields. The phase problem comes
only from one-body hopping terms. We use a simple version
of the phaseless approximation'¢ to constrain |¢) to a unique
phase. At each step of propagation, the paths of the RWs are
required to satisfy

(F4lo")
(el ¢)

where |¢) and |¢’) are the current and proposed positions,
respectively. The left-hand side is used in the importance
sampling.!>102 We use the free-electron wave function as
|W). Since this is an eigenfunction of the complex kinetic-
energy terms of H, all the phase effect is absorbed in the
deterministic one-body part. The condition on the RWs is
equivalent to the original constrained path approximation,'
to which Eq. (4) reduces if @=0. The phase constraint in Eq.
(4) is the only approximation in our method.

Since the approximation involves only the overall sign/
phase of the many-body wave function, it is reasonable to
expect that the results will be relatively insensitive to |¥;).
Extensive benchmarks have shown this to be the case. The
general approach has, in a variety of systems,!>2%-28 given
results among the most accurate that can be achieved pres-
ently from QMC.

As a quantitative measure in the current case, we compare
e(n) in 3 X3 Hubbard lattices (U=4 and 8) between our
method (QMC) and exact diagonalization (ED). At each den-
sity (both N;=N| and the polarized case N;—N =1, with
Nl=1’2’3’4)’ we calculate the ground-state energies for
1000 random @ values (identical in QMC and ED), average
the results, and estimate a statistical error bar. In the QMC
results, the error bar is the combined statistical errors from
the random @ distribution and the QMC sampling, although

R >0, (4)
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FIG. 1. (Color online) Upper panel: Ground-state energy per site
e(n), versus density, of the 3 X 3 Hubbard lattice at U=4 (blue) and
8 (red) calculated by ED (empty symbols) and our QMC method
(filled symbols). At each density, the result is the average from 1000
random O values and the statistical error is estimated from their
distribution. Bottom panel: Relative error (see text) of QMC
ground-state energy compared to the exact result (percentage).

the latter is much smaller compared to the former in this
system. The results are shown in Fig. 1. The agreement be-
tween QMC and exact results is excellent. The relative error
[eqmc(n)—egp(n)]/|egp(n)|, shown in the bottom panel, is
essentially zero for U=4 and is less than 1.5% for U=8
across the entire density range.

III. RESULTS
A. Equation of state

Our main energy results are summarized in Figs. 2 and 3.
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FIG. 2. (Color online) Ground-state energy per site of the 2D
Hubbard model vs density for several interaction strengths and lat-
tice sizes. Error bars are combined QMC and @-integration statis-
tical errors. As a result of TABC, curves are smooth and different
lattice sizes are indistinguishable. The inset shows convergence to
the thermodynamic limit with a magnified view. (To reduce clutter,
only every fifth density is shown for each size.) It also illustrates the
accuracy of the fit eg(n) across the density range for the phase
below n,.
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FIG. 3. (Color online) The hole energy e;,(h) vs hole density h
for interacting systems derived from Fig. 2. A clear minimum is
seen for U=4 at finite hole density &.. The inset shows e,(h) for
noninteracting Hubbard model calculated for lattices up to 40 X 40
with PBC. Note the kinks and the flat part of the curves near half
filling. The magenta curve is for a 12X 12 lattice (and the dashed
line for a 40X 40) using TABC, which effectively eliminates the
finite-size and shell effects.

In Fig. 2, the equation of state is presented for several lattice
sizes and interaction strengths. For densities n=<0.9, conver-
gence of the averaged energy is rapid with respect to the set
of random twists, and typically 20 @’s is sufficient. For den-
sities closer to half filling, the energy has stronger fluctua-
tions with ©. Further, the requirement on statistical accuracy
is higher in this region because the error bar on e;(h) is
magnified by 1/h [see Eq. (2)]. In this case, the number of
boundary conditions is increased (to 60-300). In each region,
the same set of random @ values are used to help correlate
the results at different densities. The main graph shows re-
sults from a Trotter time step A7=0.05; the fit below [Eq.
(5)] and results in the inset have been extrapolated to
A7=0. Convergence to the thermodynamic limit is seen with
all three lattice sizes in the main graph. As the inset shows,
12X 12 and 16 X 16 are indistinguishable to within statistical
errors (~1073).

In Fig. 3, the hole energy ¢,(h) derived from e(n) is plot-
ted. The inset illustrates the large finite-size and shell effects
under the usual PBC. Because of degeneracies at the Fermi
surface, the hole energy has kinks and is a constant below a
finite hole concentration.® As the system size is increased, the
ey(h) curves show convergence, but only slowly. Indeed a
false signal for PS is seen in the noninteracting systems.
These features are removed by TABC, with which a smooth
monotonic curve is obtained. Excellent convergence toward
the thermodynamic limit is achieved with a 12X 12 lattice.

Interacting systems show similar behaviors: under PBC
the same kinks appear in the e(n) vs n curves?>* for the
interaction strengths considered here. The combination of
CPMC and TABC leads to a dramatic improvement. The
main panel of Fig. 3 shows the hole energy for interacting
systems. A clear minimum in e,(h) can be seen at a finite
hole density in all cases when U=4. At U=4, h, is
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~0.07-0.1. As U is increased, the position of the minimum
is seen to shift to the right, i.e., to a larger 4. As U decreases
to U=2, e;,(h) appears to decrease monotonically down to
h~0.014 (the lowest doping in these lattices). Although it
cannot be completely ruled out a shallow [<0.03 from e,(0)]
minimum exists within the statistical error bars.

The energy results indicate that near half filling the sys-
tem phase separates into a hole-free phase of density n=1
and a phase at n.=1-h,.. Within a single phase, our results
are expected to be at or near the thermodynamic limit. If the
system is in a mixed state with two or more phases present,
however, there are likely finite-size and/or interface effects.
This appears to be the case from the data where we see a
minimum in the hole energy curves (as opposed to a flat
region), as well as size variations in e;,(h) in the hole density
range 0 <h=<h,. Similarly, if the system is in a spatially
inhomogeneous spin or charge density wave state with very
long wavelength modulations, for example a stripelike state
with only one stripe in a lattice of linear dimension up to
L~ 16, finite-size effects would likely make it indistinguish-
able from a phase-separated state in our calculations.

As a simple way to characterize the equation of state in
the thermodynamic limit at n<n,, we fit the calculated e(n)
on ne(0,0.9) (size L=12 only) to a fourth-order polyno-
mial. For U=4 this gives

eg(n) = —4.004n + 3.769n% — 0.7001° + 0.091n*.  (5)

Statistical errors in the fitted coefficients are 107>—1072. The
inset in Fig. 2 shows the quality of the fit.

B. Spin-spin correlation

At n=1, the ground state is known to exhibit long-range
antiferromagnetic (AF) order.>*3! Doping introduces frustra-
tion and tends to destroy the AF order. To see how this oc-
curs and the relation to PS, we use the back-propagation
technique'>? to calculate the spin-spin correlation function,

C(r) = 1%2 <(nj+r,T - nj+r,l)(nj,T - nj,1)>, (6)
J

where r is a vector on the lattice and (- --) denotes expecta-
tion with respect to the ground state. The results for a
12X 12 lattice at U=4 after twist-averaging are shown in
Fig. 4. AF order is evident at n=1, as expected. Note that the
magnitude of the long-range part is ~0.2, and double occu-
pancy of T and | electrons is significant, as the strength of
the interaction U is moderate. The long-range order decays
rapidly with n, and in the homogeneous phase, only short-
range correlation remains. [The minimum of ¢,(%) is around
n=0.9167 in 12X 12.]

A more quantitative picture can be seen from the spin
structure factor, S(q)=2,C(r)e’d". When the system has AF
order, S(q) will peak at (a7,). The calculated results are
plotted in Fig. 5, as a function of n for three different lattice
sizes. There is a marked difference between the small and
larger doping regions. Below a critical density (n=<n,),
S(r, 7r) remains finite but is small and independent of lattice
size, indicating the presence of short-range spin correlation
but no long-range magnetic order. Beyond n., S(m,) in-
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FIG. 4. (Color online) Spin-spin correlation function C(r) for a
12X 12 Hubbard lattice with U=4. Within the PS region, the sys-
tem exhibits long-range AF correlation. The strength of the long-
range correlation decreases with doping and vanishes at smaller
densities. The inset shows a 16X 16 lattice at U=4, at a few se-
lected densities near n.; n=0.9688 (blue squares), 0.9453 (green
diamonds), 0.9297 (red empty diamonds), and 0.9063 (black empty
squares). To aid the eye, the absolute value |C(r)| is shown along
two separate directions. The behavior of the curves indicates the
finite sizes of the AF phase in the periodic lattice.

creases quickly as n approaches 1. As the inset illustrates, at
each density S(7r, ) grows proportionally with system size,
suggesting the presence of long-range AF order.

We now further examine the spatial dependence of the
spin correlation. From the Maxwell construction, the size of
the AF region in a phase-separated system (n>n.) iS Nagp
=(1=h/h,)N. In our calculations, C(r) is averaged over
imaginary time and MC configurations. An AF cluster of
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FIG. 5. (Color online) Spin structure factor at q=(,) for
three system sizes calculated at U=4. The lines are guides to the
eye. The inset shows S(m,7) vs lattice size at several densities
(obtained by linear interpolation if the exact n is not available in the
particular lattice).
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linear dimension /,p>L/2 should, due to “winding” around
the periodic lattice, have a finite constant tail |C(r)| beyond
|r| ~ L—1,p, while a smaller cluster should have a tail at zero
beyond |r| ~ I,r. Our C(r) results are consistent with this. In
12 X 12, finite resolution gives only a handful of densities on
the interval (n,,n) so [, is close to either L or 0, and we see
long plateaus. The inset in Fig. 4 shows 16X 16 lattices,
focusing on several densities near n.. At n=0.9688 and
0.9453, [,p>L/2; but the former (large [,r) has a long flat
tail, while the latter shows a decline with |r| in the middle,
indicating reduced contributions in the sum in Eq. (6). Simi-
lar effects are seen in the other pair ([,p<<L/2), with
n=0.9297 showing an extended intermediate region in which
|C(r)| is finite but decreasing before the vanishing tail.

IV. DISCUSSION AND CONCLUSION

As we have discussed in Sec. II B, our calculations use a
nonperturbative, many-body QMC method. We return again
to the only approximation in the method, namely, the phase
constraint, to help further gauge its impact. Although the
possibility of a systematic bias cannot be ruled out, every
indication has shown that our results are very accurate—
including the quality of the present data, the consistency be-
tween the energy and spin correlation results, and the exten-
sive benchmarks to date. As mentioned, the constrained path
approximation has been tested (Refs. 15, 23, and 30) in vari-
ous Hubbard systems under periodic or open boundary con-
ditions. Accurate energy results are obtained. In realistic
electronic systems, an approximation, which is based on the
same framework but which has to deal with a real two-body
phase problem (as opposed to the nonstochastic one-body
hopping phase here), has been benchmarked in molecules
(Refs. 16 and 25-27) against density-matrix renormalization
group and quantum chemistry methods. Again the accuracy
in the calculated ground-state energy is consistent with that
of Fig. 1.

In addition, several other factors in the present work pro-
vide more self-consistency checks and show the robustness
of the results. At n=1 and U=4, an exact energy can be
obtained with PBC, ¢(1)=-0.8618(2),'%32 which is below
our result, —0.8559(4).> Since our largest systematic error is
expected to occur here (maximum n), this suggests that the
tendency for PS would, if anything, be underestimated by
our energies. Under TABC the entire density range (includ-
ing half filling) is treated with the same approach. All calcu-
lations use the corresponding free-electron wave function as
|W). An identical procedure is applied, which has no tuning
or adjustable parameters. Clearly the constraining |¥;) has
no minimum in e;, but an unambiguous minimum emerges
from the calculations. Neither does |¥;) contain spin order,
but the AF ordering appears and vanishes consistently with
the behavior of the energy.

In summary, recent advances in QMC techniques have
enabled us to determine the equation of state numerically in
the 2D Hubbard model at intermediate interactions. Our re-
sults show that upon doping the ground state separates into
one phase with AF order (hole free) and the rest without
(n.~0.92 for U=4). (The nature of the spatially inhomoge-
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neous state will require further investigation, for example,
the distinction between a phase-separated state in finite lat-
tices and density waves with long wavelengths, as discussed
in Sec. IIl A. More calculations are ongoing, which we plan
to report in a future publication.) The size of the AF spin-
density wave region vanishes at n., causing the system to
lose long-range AF order.
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